Simplifying radicals involves expressing a radical in its simplest form. This means removing any perfect square factors from under the radical sign. Here's how to do it:
Understand Perfect Squares: Familiarize yourself with perfect squares. Perfect squares are numbers that result from squaring an integer (e.g., 4, 9, 16, 25, 36, 49, 64, 81, 100, etc.).
Factor the Radicand: Break down the number under the radical sign (the radicand) into its prime factors. Look for factors that are perfect squares.
Identify Perfect Square Factors: Identify any perfect square factors within the factored radicand.
Extract Perfect Squares: Take the square root of the perfect square factors and move them outside the radical. Remember that √(a*b) = √a * √b
Simplify: Multiply any terms outside the radical and leave the remaining factors inside the radical.
Example 1:
Simplify √32
Example 2:
Simplify √75
Simplifying Radicals with Variables
When variables are involved, you can simplify radicals by using the following properties:
Example:
Simplify √(x<sup>3</sup>)
Important Subjects
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page